代数

代数K理论

《代数K理论》,作者:黎景辉 著 出版社:科学出版社 ISBN:9787030581020。本书介绍代数K群的结构和性质。我们从一个环R的K群K0(R),K1(R),K2(R)开始,接着构造Quillen的高次K群,介绍Waldhausen范畴的K理论和概形的K群。为了方便学习,我们补充了所需的代数和同伦代数的基本知识,并介绍了模型范畴理论。最后介绍了Grothendi

模李超代数

《模李超代数》,作者:张永正,刘文德著 出版社:科学出版社 ISBN:7030140095。本书主要反映作者近年来在模李超代数方向上的研究成果,构造了四类Cartan型模李超代数,介绍了形式向量场上的两类无限维的Cartan 型李超代数等。

算子代数与非交换Lp空间引论

《算子代数与非交换Lp空间引论》,作者:许全华,吐尔德别克,陈泽乾著 出版社:科学出版社 ISBN:9787030272478。本书主要介绍算子代数与非交换Lp空间的基本内容,第1章和第2章介绍C*代数的基本理论;第3章和第4章介绍von Neumann代数的基本理论;第5章和第6章简要介绍非交换Lp空间的基本性质以及相关的各种例子。

代数几何. Ⅰ. 代数曲线,代数流形与概型

《代数几何. Ⅰ. 代数曲线,代数流形与概型》,作者:I. R. Shafarevich[编著] 出版社:科学出版社 ISBN:9787030234803。This book consists of two parts. The first is devoted to the theory of curves, which are treated from both the analytic an